An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency
نویسندگان
چکیده
A simulation study of a Cu(In1 - xGax)Se2 (CIGS) thin film solar cell has been carried out with maximum efficiency of 24.27 % (Voc = 0.856 V, Jsc = 33.09 mA/cm(2) and FF = 85.73 %). This optimized efficiency is obtained by determining the optimum band gap of the absorber and varying the doping concentration of constituent layers. The Ga content denoted by x = Ga/(In + Ga) is selected as 0.35 which provides the optimum band gap of absorber layer as 1.21 eV. Theoretically, the effects of Ga fraction "x" on CIGS absorber band gap are investigated and to avoid the lattice mismatch effect, the efficiency measurements due to the CIGS band gaps >1.21 eV have not come to the consideration. A one-dimensional simulator ADEPT/F 2.1 has been used to analyze the fabricated device parameters and hence to calculate open circuit voltage, short circuit current, fill factor and efficiency.
منابع مشابه
The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency
The main problemswith the use of fossil fuels is the restrictions on their access and the detrimental consequences of their use which causes a threat to human health and quality of life. Consequently, the use of other energy sources has become necessary. Renewable Energy as a permanent and clean energy source is an answer to this problem. One such energy source includes photovoltaic solar energ...
متن کاملEffect of Annealing on Physical Properties of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Applications
Cu2ZnSnS4 (CZTS) thin films were prepared by directly sputteringCu (In,Ga)Se2 quaternary target consisting of (Cu: 25%, Zn: 12.5%, Sn; 12.5%and S: 50%). The composition and structure of CZTS layers have beeninvestigated after annealing at 200 0C, 350 0C and 500 0C under vacuum. Theresults show that recrystallization of the CZTS thin film occurs and increasingthe grain size with a preferred orie...
متن کاملSynthesis and characterization of Ag-doped TiO2 nanostructure and investigation of its application as dye-sensitized solar cell
A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by doping foreign ion into TiO2 lattice via sol-gel process is reported. DSSCs are based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiency, it is important to increase the electron injection and optical absorption. One pro...
متن کاملFabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملDeposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cells
Thin film Cu(In,Ga)Se2 solar cells with ALD-deposited Zn1–xSnxOy buffer layers are fabricated and the solar cell properties are investigated for varying ALD deposition temperatures in the range from 90 °C up to 180 °C. It is found that a process window exists between 105 °C and 135 °C, where high solar cell efficiency can be achieved. At lower ALD deposition temperatures the solar cell performa...
متن کامل